Logo

The 14th International Modelica Conference
Linköping, September 20-24, 2021

[Practical Information] [Tutorials and Vendor Sessions] [Proceedings] [Modelica Libraries] [FMI User Meeting] [Archives] [Journal Special Issue (open for submissions until 2022-07-31)]

Papers by Josef Kircher

Title: NeuralFMU: Towards Structural Integration of FMUs into Neural Networks
Authors: Tobias Thummerer, Josef Kircher and Lars Mikelsons
Abstract: This paper covers two major subjects: First, the presentation of a new open-source library called FMI.jl for integrating FMI into the Julia programming environment by providing the possibility to load, parameterize and simulate FMUs. Further, an extension to this library called FMIFlux.jl is introduced, that allows the integration of FMUs into a neural network topology to obtain a NeuralFMU. This structural combination of an industry typical black-box model and a data-driven machine learning model combines the different advantages of both modeling approaches in one single development environment. This allows for the usage of advanced data driven modeling techniques for physical effects that are difficult to model based on first principles.
Keywords: NeuralFMU, NeuralODE, FMI, FMU, Julia
Paper: full paper Creative Commons License
Bibtex:
@InProceedings{modelica.org:Thummerer:2021,
  title = "{NeuralFMU: Towards Structural Integration of FMUs into Neural Networks}",
  author = {Tobias Thummerer and Josef Kircher and Lars Mikelsons},
  pages = {297--306},
  doi = {10.3384/ecp21181297},
  booktitle = {Proceedings of the 14th International Modelica Conference},
  location = {Link\"oping, Sweden},
  editor = {Martin Sj\"olund and Lena Buffoni and Adrian Pop and Lennart Ochel},
  isbn = {978-91-7929-027-6},
  issn = {1650-3740},
  month = sep,
  series = {Link\"oping Electronic Conference Proceedings},
  number = {181},
  publisher = {Modelica Association and Link\"oping University Electronic Press},
  year = {2021}
}