Logo

The 14th International Modelica Conference
Linköping, September 20-24, 2021

[Practical Information] [Tutorials and Vendor Sessions] [Proceedings] [Modelica Libraries] [FMI User Meeting] [Archives] [Journal Special Issue (open for submissions until 2022-07-31)]

Papers by Frederic Bruder

Title: Modia and Julia for Grey Box Modeling
Authors: Frederic Bruder and Lars Mikelsons
Abstract: During the process of modelling an existing dynamic physical system, it may be hard to capture some of the phenomena exactly on the basis of only textbook-equations. With measurement data from the real system, approximators like artificial neural networks can help improve the models. However, simulation and machine learning are usually done in different software applications. A unified environment for modeling, simulation and optimization would be highly valuable. We here present a framework within the Julia programming language that encompasses tools for acausal modeling, automatic differentiation rsp. sensitivity analysis involving solvers for differential equations. We use it to build and evaluate an easily interpretable model based on both physics and data.
Keywords: Grey Box Modeling, Hybrid Modeling, Scientific Machine Learning, Modia, Julia
Paper: full paper Creative Commons License
Bibtex:
@InProceedings{modelica.org:Bruder:2021,
  title = "{Modia and Julia for Grey Box Modeling}",
  author = {Frederic Bruder and Lars Mikelsons},
  pages = {87--95},
  doi = {10.3384/ecp2118187},
  booktitle = {Proceedings of the 14th International Modelica Conference},
  location = {Link\"oping, Sweden},
  editor = {Martin Sj\"olund and Lena Buffoni and Adrian Pop and Lennart Ochel},
  isbn = {978-91-7929-027-6},
  issn = {1650-3740},
  month = sep,
  series = {Link\"oping Electronic Conference Proceedings},
  number = {181},
  publisher = {Modelica Association and Link\"oping University Electronic Press},
  year = {2021}
}